Science Requirements for GBX Investigation SHERE SHear Extensional Rheology Experiment

Silear Extensional Kneology Experime

Objective

• To study the effect of pre-shear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions.

Hardware Requirements

- Generate a smooth, bubble-free, cylindrical liquid bridge ($5x10\emptyset$ mm $\pm 5\%$) between 2 flat endplates.
- Impose homogeneous shear rate in fluid by rotating one of the endplates in the range $0 \le \Omega \le 500 \text{ rpm } \pm 1\%$ and holding other plate stationary. Achieve target angular velocity within 100ms; stop rotation within 10ms of starting elongational deformation.
- Impose an approximately homogeneous elongational deformation in the fluid by axially translating one endplate in an exponential manner to generate strain rates (ε') in the range 0.1 $\leq \varepsilon' \leq 5.0 \text{ s}^{-1}$ obtaining maximum Hencky strains in the range 3.5 $\leq \varepsilon \leq$ 4.5.
- Conduct tests within the temperature range $20 \le T \le 25$ °C ($68 \le T \le 77$ °F). Control/minimize temperature fluctuations during each series of tests on the same fluid sample to within ± 1.0 °C. *Desired* to control the environment temperature such that all tests begin at the same temperature ± 0.5 °C

Measurement Requirements

- Axial force ('thrust') induced due to shearing and stretching the elastic fluid within range $|F| \le 10^4$ dyne ± 50 dyne. (= $10 \pm .05$ grams-force).
- Actual axial displacement of the translation stage (0–20 cm range)
- Axial midplane diameter of fluid filament $(0.1 \le D \le 10 \text{mm}, \pm 0.005 \text{mm})$
- Temperature *T* of the fluid
- Video of fluid filament profile evolution (resolution TBD; adequate to accurately detect edges and measure axial profile D(z) of the fluid column)

Test Matrix

- 5 test series spanning strain rates $0.1 \le \varepsilon' \le 5.0 \text{ s}^{-1}$, each series conducted with 5 pre-shear rates in the range $0 \le \Omega \le 500 \text{ rpm}$.
- Minimum of 9 tests required for minimum science return; 25 tests for complete success

The SHERE Glovebox Investigation has 25 test points. The 25 test points consist of 5 series of tests (I – V) each with a different stretch rate. Within each series, there are 5 different pre-shear rates. A minimum of 9 complete test points is required for minimum scientific success, as depicted in the shaded areas of Table 1.

Table 1

SHERE Glovebox Investigation Test Matrix					
	Stretch Rate				
	I (0.1 s ⁻¹)	II (0.3 s ⁻¹)	III (1.0 s ⁻¹)	IV (3.0 s ⁻¹)	V (5.0 s ⁻¹)
Pre-Shea	0.0	0.0	0.0	0.0	0.0
	1.0	1.0	1.0	1.0	1.0
	10.0	10.0	10.0	10.0	10.0
r R a	30.0	30.0	30.0	30.0	30.0
t e	50.0	50.0	50.0	50.0	50.0

- Minimum Science Test Matrix is shaded areas
- Pre-Shear Rotation Rate, Ω = (Pre-Shear Rate)(L_o/R_o)(60/2 π), L_o =5mm, R_o =5mm Stretch Velocity, V(t) = (L_o)(Stretch Rate) $e^{(Stretch\ Rate)t}$ Final Stretch Velocity, V_f = (40) (L_o)(Stretch Rate)

Post-Flight Data Deliverables for SHERE

The following deliverables will be supplied by NASA to the GI for post flight analysis:

- Time synchronized Labview data of axial force as a function of experiment time
- Time-synchronized axial displacement of the translation stage
- Time synchronized Labview data of fluid filament midpoint diameter as a function of experiment time
- Time-synchronized fluid temperature, T, as a function of experiment time
- Time-synchronized digital or hi-resolution analog video images of fluid filament profile evolution as a function of experiment time
- Any other engineering parameters recorded or videotaped during the experiment will be desired